org.apache.spark.streamdm.classifiers.trees

GaussianNumericFeatureClassObserver

class GaussianNumericFeatureClassObserver extends NumericFeatureClassObserver with Serializable

Class GuassianNumericFeatureClassObserver for observing the class data distribution for a numeric feature using gaussian estimators. This observer monitors the class distribution of a given feature. Used in naive Bayes and decision trees to monitor data statistics on leaves.

Linear Supertypes
NumericFeatureClassObserver, FeatureClassObserver, Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. GaussianNumericFeatureClassObserver
  2. NumericFeatureClassObserver
  3. FeatureClassObserver
  4. Serializable
  5. Serializable
  6. AnyRef
  7. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new GaussianNumericFeatureClassObserver(that: GaussianNumericFeatureClassObserver)

  2. new GaussianNumericFeatureClassObserver(numClasses: Int, fIndex: Int, numBins: Int = 10)

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def bestSplit(criterion: SplitCriterion, pre: Array[Double], fValue: Double, isBinarySplit: Boolean): FeatureSplit

    Gets the best split suggestion given a criterion and a class distribution

    Gets the best split suggestion given a criterion and a class distribution

    criterion

    the split criterion to use

    pre

    the class distribution before the split

    fValue

    the value of the feature

    isBinarySplit

    true to use binary splits

    returns

    suggestion of best feature split

    Definition Classes
    GaussianNumericFeatureClassObserverFeatureClassObserver
  8. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  9. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  10. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  11. val estimators: Array[GaussianEstimator]

  12. val fIndex: Int

  13. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  14. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  15. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  16. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  17. val maxValuePerClass: Array[Double]

  18. def merge(that: FeatureClassObserver, trySplit: Boolean): FeatureClassObserver

    Merge the FeatureClassObserver to current FeatureClassObserver

    Merge the FeatureClassObserver to current FeatureClassObserver

    that

    the FeatureClassObserver will be merged

    trySplit

    whether called when a Hoeffding tree try to split

    returns

    current FeatureClassObserver

    Definition Classes
    GaussianNumericFeatureClassObserverFeatureClassObserver
  19. val minValuePerClass: Array[Double]

  20. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  21. final def notify(): Unit

    Definition Classes
    AnyRef
  22. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  23. val numBins: Int

  24. val numClasses: Int

  25. def observeClass(cIndex: Double, fValue: Double, weight: Double): Unit

    Updates statistics of this observer given a feature value, a class index and the weight of the example observed

    Updates statistics of this observer given a feature value, a class index and the weight of the example observed

    cIndex

    the index of class

    fValue

    the value of the feature

    weight

    the weight of the example

    Definition Classes
    GaussianNumericFeatureClassObserverFeatureClassObserver
  26. def observeTarget(fValue: Double, weight: Double): Unit

    Not yet supported.

    Not yet supported.

    Definition Classes
    FeatureClassObserver
  27. def probability(cIndex: Double, fValue: Double): Double

    Gets the probability for an attribute value given a class

    Gets the probability for an attribute value given a class

    cIndex

    the index of class

    fValue

    the value of the feature

    returns

    probability for a feature value given a class

    Definition Classes
    GaussianNumericFeatureClassObserverFeatureClassObserver
  28. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  29. def toString(): String

    Definition Classes
    AnyRef → Any
  30. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  31. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  32. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from FeatureClassObserver

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped