org.apache.spark.streamdm.classifiers.model

HingeLoss

class HingeLoss extends Loss with Serializable

Implementation of the squared loss function.

Linear Supertypes
Loss, Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. HingeLoss
  2. Loss
  3. Serializable
  4. Serializable
  5. AnyRef
  6. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new HingeLoss()

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  10. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  11. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  12. def gradient(label: Double, dot: Double): Double

    Computes the value of the gradient function

    Computes the value of the gradient function

    dot

    the dot product of the linear model and the instance

    returns

    the gradient value

    Definition Classes
    HingeLossLoss
  13. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  14. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  15. def loss(label: Double, dot: Double): Double

    Computes the value of the loss function

    Computes the value of the loss function

    dot

    the dot product of the linear model and the instance

    returns

    the loss value

    Definition Classes
    HingeLossLoss
  16. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  17. final def notify(): Unit

    Definition Classes
    AnyRef
  18. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  19. def predict(dot: Double): Double

    Computes the binary prediction based on a dot prodcut

    Computes the binary prediction based on a dot prodcut

    dot

    the dot product of the linear model and the instance

    returns

    the predicted binary class

    Definition Classes
    HingeLossLoss
  20. def prob(dot: Double): Double

    Computes the probability of a binary prediction based on a dot product

    Computes the probability of a binary prediction based on a dot product

    dot

    the dot product of the linear model and the instance

    returns

    the predicted probability

    Definition Classes
    Loss
  21. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  22. def toString(): String

    Definition Classes
    AnyRef → Any
  23. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  24. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  25. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Loss

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped