org.apache.spark.streamdm.classifiers

PerceptronLearner

class PerceptronLearner extends SGDLearner

The PerceptronLearner trains a LinearModel which is a perceptron. It currently is implemented as an SGDLearner with a PerceptronLoss function. The lambda learning rate parameter, and the number of features need to be specified in the associated Task configuration file.

Linear Supertypes
SGDLearner, Classifier, Learner, Serializable, Configurable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. PerceptronLearner
  2. SGDLearner
  3. Classifier
  4. Learner
  5. Serializable
  6. Configurable
  7. Serializable
  8. AnyRef
  9. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new PerceptronLearner()

Type Members

  1. type T = LinearModel

    Definition Classes
    SGDLearnerLearner

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. final def ##(): Int

    Definition Classes
    AnyRef → Any
  4. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  5. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  6. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  7. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  8. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  9. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  10. var exampleLearnerSpecification: ExampleSpecification

    Definition Classes
    SGDLearner
  11. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  12. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  13. def getModel: LinearModel

    Gets the current Model used for the Learner.

    Gets the current Model used for the Learner.

    returns

    the Model object used for training

    Definition Classes
    SGDLearnerLearner
  14. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  15. def init(exampleSpecification: ExampleSpecification): Unit

    Init the model based on the algorithm implemented in the learner.

    Init the model based on the algorithm implemented in the learner.

    exampleSpecification

    the ExampleSpecification of the input stream.

    Definition Classes
    SGDLearnerLearner
  16. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  17. val lambdaOption: FloatOption

    Definition Classes
    SGDLearner
  18. val loss: PerceptronLoss

    Definition Classes
    PerceptronLearnerSGDLearner
  19. val lossFunctionOption: ClassOption

    Definition Classes
    SGDLearner
  20. var model: LinearModel

    Definition Classes
    SGDLearner
  21. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  22. final def notify(): Unit

    Definition Classes
    AnyRef
  23. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  24. val numFeaturesOption: IntOption

    Definition Classes
    SGDLearner
  25. def predict(input: DStream[Example]): DStream[(Example, Double)]

    Definition Classes
    SGDLearnerClassifier
  26. val regularizer: Regularizer

    Definition Classes
    SGDLearner
  27. val regularizerOption: ClassOption

    Definition Classes
    SGDLearner
  28. val regularizerParameter: FloatOption

    Definition Classes
    SGDLearner
  29. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  30. def toString(): String

    Definition Classes
    AnyRef → Any
  31. def train(input: DStream[Example]): Unit

    Train the model based on the algorithm implemented in the learner, from the stream of Examples given for training.

    Train the model based on the algorithm implemented in the learner, from the stream of Examples given for training.

    input

    a stream of Examples

    Definition Classes
    SGDLearnerLearner
  32. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  33. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  34. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from SGDLearner

Inherited from Classifier

Inherited from Learner

Inherited from Serializable

Inherited from Configurable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped